

GCE AS MARKING SCHEME

SUMMER 2019

AS (NEW)
FURTHER MATHEMATICS
UNIT 1 FURTHER PURE MATHEMATICS A
2305U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE FURTHER MATHEMATICS

AS UNIT 1 FURTHER PURE MATHEMATICS A

SUMMER 2019 MARK SCHEME

1.	Method 1:		
	$X = A^{-1}B$	M1	
	det A = 14	B1	
	$A^{-1} = \frac{1}{14} \begin{pmatrix} 0 & -7 \\ 2 & 3 \end{pmatrix}$	M1A1	M1 valid attempt
	$\therefore X = \frac{1}{14} \begin{pmatrix} 0 & -7 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 0 & 4 \end{pmatrix}$	m1	to find A ⁻¹ Dep on 1st M1
	$X = \begin{pmatrix} 0 & -2 \\ \frac{5}{7} & 1 \end{pmatrix}$	A1	cao
	Method 2:		
		(M1)	Use of
	Let $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Then $\begin{pmatrix} 3 & 7 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 0 & 4 \end{pmatrix}$	(m1)	
	leads to $3a + 7c = 5$ and $-2a + 0c = 0$ $3b + 7d = 1$ and $-2b + 0d = 4$	(A1)	
		(100.4)	
	Solving,	(m1) (A1)	cao
	a = 0, b = -2, OR $a = 0, c = 5/7c = 5/7, d = 1$ $b = -2, d = 1$	(A1)	cao
2. (a)	$AB: \mathbf{r} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k} + \lambda(4\mathbf{j} + 5\mathbf{k} - 2\mathbf{i} - 3\mathbf{j} + \mathbf{k})$ $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} + 6\mathbf{k})$ oe	M1 A1	Award M1 for either AB or CD
	CD: $\mathbf{r} = 7\mathbf{i} - 3\mathbf{k} + \mu(-3\mathbf{i} - \mathbf{j} - 5\mathbf{k} - 7\mathbf{i} + 3\mathbf{k})$ $\mathbf{r} = 7\mathbf{i} - 3\mathbf{k} + \mu(-10\mathbf{i} - \mathbf{j} - 2\mathbf{k})$ oe	A1	
			If no marks, award SC1 for both AB and CD
			Condone 1st omission of $\mathbf{r} =$
			Penalise –1 for 2nd omission of r =

(b)	METHOD 1: Directions: $-2\mathbf{i} + \mathbf{j} + 6\mathbf{k}$ and $-10\mathbf{i} - \mathbf{j} - 2\mathbf{k}$	B1	FT (a)
	Checking for perpendicularity,	M1	For checking scalar product
	$(-2\mathbf{i} + \mathbf{j} + 6\mathbf{k}).$ $(-10\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 20 - 1 - 12 = 7$ Because 7 \neq 0, AB and CD are not perpendicular.	A1 E1	Must refer to '≠0'
	METHOD 2: Directions: $-2\mathbf{i} + \mathbf{j} + 6\mathbf{k}$ and $-10\mathbf{i} - \mathbf{j} - 2\mathbf{k}$	(B1)	FT (a)
	Angle between vectors: $\cos \theta = \frac{a.b}{ a b }$	(M1)	Use
	$\cos \theta = \frac{7}{\sqrt{41}\sqrt{105}} \qquad \text{OR} \qquad \theta = 83.9^{o}$	(A1)	
	Because $\cos \theta \neq 0$ (OR $\theta \neq 90^{\circ}$), AB and CD are not perpendicular.	(E1)	Must refer to '≠0' (OR '≠90')
3.	$z = 6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 3 + 3\sqrt{3}i$	M1A1	M1 for either z
a)	$w = 6\left(\cos\frac{3\pi}{6} + i\sin\frac{3\pi}{6}\right) = 3\sqrt{3} - 3i$	A1	or $\frac{11\pi}{6}$
b)	Method 1: $\frac{z}{w} = \frac{3 + 3\sqrt{3}i}{3\sqrt{3} - 3i} = \frac{(3 + 3\sqrt{3}i)(3\sqrt{3} + 3i)}{(3\sqrt{3} - 3i)(3\sqrt{3} + 3i)}$	M1	FT (a)
	$\frac{z}{w} = \frac{9\sqrt{3} + 9i + 27i - 9\sqrt{3}}{27 + 9}$ $\frac{z}{w} = i$	A1A1 A1	A1 num A1 denom Dep on all previous marks awarded
	Method 2: $\left \frac{z}{z} \right = \frac{6}{z} = 1$	(B1)	FT (a)
	$\left \frac{z}{w}\right = \frac{6}{6} = 1$ $\arg\left(\frac{z}{w}\right) = \frac{\pi}{3} - \frac{-\pi}{6} = \frac{\pi}{2}$ $\frac{z}{w} = 1 \times \left(\cos^{\frac{\pi}{3}} + i\sin^{\frac{\pi}{3}}\right)$	(B1) (M1)	(5)
	$\frac{z}{w} = 1 \times \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$ $\frac{z}{w} = i$	(A1)	

4.	When $n = 1$, $9^1 + 15 = 24$ which is a multiple of 8. Therefore, proposition is true for $n = 1$.	B1	
	Assume the proposition is true for $n = k$ i.e. $9^k + 15$ is a multiple of 8 or $9^k + 15 = 8N$	M1	
	Consider n = k+1 $9^{k+1} + 15 = 9(9^k) + 15$ = 9(8N - 15) + 15 = 72N - 120	M1 A1 A1	
	Each of the two terms are multiples of 8 so therefore is the left hand side.	A1	
	So, if proposition is true for $n = k$, it's also true for $n = k+1$. Since we have shown it's true for $n = 1$, by mathematical induction, it's true for all positive integers n .	A1	cso

5.	METHOD1:		
] .	$(x + \frac{1}{2})(x + 3)$	M1	
	(2x+1)(x+3)		
	(2x+1)(x+3) $(2x^2+7x+3)$ is the quadratic factor	A1	Allow $x^2 + \frac{7}{2}x + \frac{3}{2}$
	$2x^4 - x^3 - 15x^2 + 23x + 15 = 0$, 7 2
	$(2x^2 + 7x + 3)(x^2 - 4x + 5) = 0$	M1A1	
	$\therefore x^2 - 4x + 5 = 0$		$2x^2 - 8x + 10 = 0$
	Solving,		
	$x = \frac{4 \pm \sqrt{16 - 20}}{2}$ OR $(x - 2)^2 = -1$	M1	
	x = 2 x = 2 + i or $x = 2 - i$	A1	cao
	$\begin{vmatrix} x-2+i & 0i & x-2-i \\ 1 & 1 & 1 \end{vmatrix}$		Award if previous
			M1
	METHOD 2:		
	Use of roots of polynomials to give:	(M1)	At least 2
	$\alpha + \beta - \frac{1}{2} - 3 = \frac{1}{2} \rightarrow \alpha + \beta = 4$	(A1)	equations
	1	(A1)	
	$\alpha \times \beta \times -\frac{1}{2} \times -3 = \frac{15}{2} \rightarrow \alpha \beta = 5$	(A1)	
	2 2		
	$\therefore x^2 - 4x + 5 = 0$	(A1)	
	Solving,		
	$x = \frac{4 \pm \sqrt{16 - 20}}{2}$ OR $(x - 2)^2 = -1$	(M1)	
	$x=2+\tilde{i}$ or $x=2-i$	(A1)	cao
			Award if previous
			M1
6.	z-1 = z-2i		
0.	$\begin{vmatrix} z & 1 - z & 2i \\ x + iy - 1 = x + iy - 2i \end{vmatrix}$	M1	
	(x-1) + iy = x + i(y-2)		
	$\sqrt{(x-1)^2 + y^2} = \sqrt{x^2 + (y-2)^2}$	m1	
	$x^2 - 2x + 1 + y^2 = x^2 + y^2 - 4y + 4$	A 4	
	-2x + 1 = -4y + 4	A1	
	4y = 2x + 3 which is a straight line oe		
		I	

7. a)	$\sum_{r=1}^{2m} (r^2 + 4r + 4)$	M1	
	Use of formulae for $\sum r^2$ and $\sum r$ and $\sum 4$	M1	
	$= \frac{1}{6}(2m)(2m+1)(4m+1) + 4 \times \frac{1}{2}(2m)(2m+1) + 8m$	A1	
	$= \frac{1}{6}m(16m^2 + 12m + 2 + 48m + 24 + 48) \text{ o.e.}$		
	$=\frac{1}{3}m(8m^2+30m+37)$	A1	cao
b)	Substituting appropriate values into their expressions in (a) i.e. $m = 5$ and $m = 10$ for $2m$	M1	FT (a)
	Subtracting values for $r = 10$ from $r = 20$ $\sum_{r=1}^{2 \times 10} (r+2)^2 - \sum_{r=1}^{2 \times 5} (r+2)^2$	m1	
	$= \frac{1}{3} \times 10 \times (8 \times 100 + 30 \times 10 + 37) - \frac{1}{3} \times 5 \times (8 \times 25 + 30 \times 5 + 37)$ $= 3145$	A1 A1	cao
	If candidate has used $\sum_{r=1}^{m} (r+2)^2$ expression obtained		
	is		
	$= \frac{1}{6}m(2m^2 + 15m + 37)$		
	Then calculations are Subtracting values for $r=10$ from $r=20$ $\sum_{r=1}^{20} (r+2)^2 - \sum_{r=1}^{10} (r+2)^2$	(M1) (m1)	FT (a)
	$= \frac{1}{6} \times 20 \times (2 \times 400 + 15 \times 20 + 37)$	(A1)	
	$-\frac{1}{6} \times 10 \times (2 \times 100 + 15 \times 10 + 37)$	(A1)	cao
	= 3145		

			_
8.	METHOD 1: Let $\mathbf{r} \cdot \mathbf{n} = 1$ where $\mathbf{n} = p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$	M1	
	A: 3p + 5q + 6r = 1 $B: 5p - q + 7r = 1$ $C: -p + 7q = 1$	A2	A1 for any 1 A2 for all 3
	Substituting $p = 7q - 1$ into A and B gives: $26q + 6r = 4$ $34q + 7r = 6$	m1	Accept working with q or r instead of p
	Solving,	M1	
	$q = \frac{4}{11} r = -\frac{10}{11} p = \frac{17}{11}$	A2	A1 for 2 variables Provided m1 awarded
	Therefore, $\mathbf{r} \cdot \left(\frac{17}{11}\mathbf{i} + \frac{4}{11}\mathbf{j} - \frac{10}{11}\mathbf{k}\right) = 1$ oe	B1	FTp,q,r
	$\frac{17}{11}x + \frac{4}{11}y - \frac{10}{11}z = 1 \text{oe}$	B1	FT equation of the plane
	METHOD 2: Let $\mathbf{r} \cdot \mathbf{n} = 1$ where $\mathbf{n} = p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$	(M1)	
	AB = 2i - 6j + k BC = -6i + 8j - 7k CA = 4i - 2j + 6k		
	AB. $\mathbf{n} \to 2p - 6q + r = 0$ (1) BC. $\mathbf{n} \to -6p + 8q - 7r = 0$ (2) CA. $\mathbf{n} \to 4p - 2q + 6r = 0$ (3)	(A2)	A1 for any 1 A2 for all 3
	Row operations: (2) + 3(1): $0 - 10q - 4r = 0 \rightarrow r = -\frac{5}{2}q$	(m1)	
	(2) + 7(1): $8p - 34q + 0 = 0 \rightarrow p = \frac{17}{4}q$		
	Let $q = 4$, $p = 17$, $q = 4$, $r = -10$ oe	(A2)	A1 for 2 variables
	$\mathbf{a}.\mathbf{n} = (3 \times 17) + (5 \times 4) + (6 \times -10) = 11$	(B1)	
	Therefore, $p = \frac{17}{11}$ $q = \frac{4}{11}$ $r = -\frac{10}{11}$		
	$\mathbf{r}.\left(\frac{17}{11}\mathbf{i} + \frac{4}{11}\mathbf{j} - \frac{10}{11}\mathbf{k}\right) = 1$ oe	(B1)	$FT\ p,q,r$
	$\frac{17}{11}x + \frac{4}{11}y - \frac{10}{11}z = 1 \text{oe}$	(B1)	FT equation of the plane

9.	$u + iv = (x + iy)^2 - 1$	M1	
a)	$u + iv = x^2 - y^2 + 2ixy - 1$	A1	
,	Comparing coefficients	m1	
	Imaginary parts: $v = 2xy$ (given)		
	Real parts: $u = x^2 - y^2 - 1$	A1	Both correct
b)	Putting $y = 3x$	M1	FT (a)
(D)		IVI I	1 1 (a)
	$v = 2x \times 3x = 6x^2$	A 4	A1 for both <i>u</i>
	$u = x^2 - 9x^2 - 1 \qquad (= -8x^2 - 1)$	A1	and v
			and v
	Eliminating x , the equation of the locus Q is	M1	
	$u = -8\left(\frac{v}{\epsilon}\right) - 1$ oe simplified	A1	cao
	u = o(6) 1 of simplified	, , ,	
10	From equation 4:		
10.	From equation 1:	D4	Doth correct
a)	$\alpha\beta = \frac{r}{p}$ $\alpha + \beta = -\frac{q}{p}$	B1	Both correct
	r		
	Sum of roots = $2\alpha + 2\beta$ (= $2(\alpha + \beta)$)		
	Sum of pairs = $\alpha\beta + \alpha(\alpha + \beta) + \beta(\alpha + \beta)$	DO	D4 for 0 correct
	$(=\alpha\beta + (\alpha + \beta)^2)$	B2	B1 for 2 correct
	Triples = $\alpha\beta(\alpha + \beta)$		
	Thiplos = $up(u + p)$		
	-h (a) $2a$		
	$\therefore \frac{-b}{a} = 2 \times \left(-\frac{q}{p}\right) = -\frac{2q}{p}$		
	$a \qquad \langle p \rangle \qquad p$		
	$\left \frac{c}{a} = \frac{r}{p} + \left(-\frac{q}{p} \right)^2 = \frac{r}{p} + \frac{q^2}{p^2}$		
	$\left(\frac{a}{a} - \frac{b}{p} + \left(-\frac{b}{p}\right)\right) - \frac{b}{p} + \frac{b}{p^2}$		
	-d r q q	B2	B1 for 2 correct
	$\left \frac{-d}{a} = \frac{r}{n} \times \left(-\frac{q}{n} \right) = -\frac{qr}{n^2} \right $		Di ioi 2 concet
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$a 2ar^2 (r a^2) ar$	B1	FT 2nd B2
	The equation is $x^3 + \frac{2qx^2}{p} + \left(\frac{r}{p} + \frac{q^2}{p^2}\right)x + \frac{qr}{p^2} = 0$ oe	יט	above
			above
b)	From equation 2:		
~ /	$2\alpha\gamma = -\frac{r}{p}$	B1	
	$2u\gamma - \frac{1}{p}$		
	44		
	$\alpha = \frac{1}{\alpha} = -\frac{1}{\alpha}$	M1	
	$p\beta$ $2p\gamma$		
	$\frac{1}{1}$		
	$\alpha = \frac{r}{p\beta} = -\frac{r}{2p\gamma}$ $\therefore \frac{1}{\beta} = -\frac{1}{2\gamma}$		
	$\beta = -2\gamma$	A1	Convincina
1		Λ1	Convincing